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Abstract
A light scalar field, minimally or not-minimally coupled to the metric field,
is a well-defined candidate for the dark energy, alleviating the fine-tuning
problem intrinsic to the cosmological constant and avoiding the difficulties of
parameterizations. We present a general description of the weak gravitational
lensing valid for every metric theory of gravity, including vector and tensor
perturbations for a non-flat spatial metric. Based on this description, we
investigate two minimally coupled scalar-field quintessence models using
VIRMOS-Descart and CFHTLS cosmic-shear data, and forecast the constraints
for the proposed space-borne wide-field imager DUNE.

PACS numbers: 98.80.−k, 98.80.Jk, 98.62.Sb, 95.36.+x

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is overwhelming evidence that the description of the observed universe cannot rely only
on the assumption of the Copernican principle, on the general relativity and on the Standard
Model of particle physics, eventually extended to include a dark matter candidate [1]. We shall
define dark energy as anything which represents the failure of some of these assumptions: (i)
it could be a signature of the dynamical effect of inhomogeneities, not properly averaged when
accounting for the background dynamics [2]. (ii) Gravitational interactions (on cosmological
scales) could be not described by the Hilbert–Einstein action, requiring, e.g., the inclusion of
higher order terms as in scalar–tensor theories of gravity [3] or a formulation in more than
four dimensions, as in braneworld scenarios or superstring theories [4]. (iii) Dark energy is an
effective ‘matter’ field, often dubbed quintessence [5], not clustering on the observed scales and
possibly coupled to the matter fields [6], provided the weak equivalence principle is preserved.

1751-8113/07/257105+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 7105

http://dx.doi.org/10.1088/1751-8113/40/25/S69
mailto:carlo.schimd@cea.fr
http://stacks.iop.org/JPhysA/40/7105


7106 C Schimd and I Tereno

A combination of these options is the last possibility, like in extended quintessence scenarios
[7]. One can therefore define classes of models, characterized by definite observational and
experimental signatures [8].

The weak gravitational lensing by large-scale structures, or cosmic shear, is a geometrical
observable which depends on both background evolution and structures formation [9].
Therefore, it is a promising tool to investigate dark energy, allowing one to explore in unbiased
way the low-redshift universe where dark energy mostly acts [10, 11]. Cosmic shear has been
exploited to investigate ordinary quintessence scenarios, considering a parameterization of the
quintessence equation of state [10–12]. Based on [13] and following [14], we use a general
formulation of weak lensing valid for every metric theory of gravity, thus for general relativity
and scalar–tensor theories as well [15] (see also [16] for an alternative approach). We therefore
move towards ‘physics’-inspired models, for the first time using cosmic-shear real data by
CFHT surveys and evaluating the performance of a space-based wide-field survey [17].

2. Geometry of null congruences: cosmic shear

Every galaxy defines a light bundle, or congruence of null geodesics xµ(λ) = x̄µ(λ) + ξµ(λ)

deviating from a fiducial, arbitrary geodesic x̄µ by a displacement ξµ, converging at the
observer position O (where ξµ = 0), and whose tangent vectors kµ ≡ dxµ/dλ are solution
of kµkµ = 0 and kν∇νk

µ = 0 (we take the affine parameter λ vanishing in O and increasing
towards the past). The shape of the light bundle is described by a deformation tensor Da

b ,
whose evolution along the fiducial geodesic (defined by k̄µ) is deduced from the geodesic
deviation equation for ξµ. Setting ξa(λ) = na

µξµ(λ) ≡ Db
a(λ)ξ̇b(0), on the plane

{
n

µ

1 , n
µ

2

}
orthogonal to the line-of-sight

(
na

µn
µ

b = δa
b , n

a
µk̄µ = 0

)
we have

D̈a
b = Ra

cDc
b (1)

with initial conditions Da
b(0) = 0, Ḋa

b (0) = δa
b , the dot referring to a derivation with respect

to λ. Here, Ra
b ≡ Rα

µνβ k̄µk̄νnα
an

β

b = − 1
2Rµνk̄

µk̄νδa
b + Cα

µνβ k̄µk̄νna
αn

β

b is the optical tidal
matrix written in terms of the Riemann tensor Rα

µνβ or in terms of the Ricci and Weyl tensors,
respectively, Rµν and Cα

µνβ . This latter expression highlights the sources of the isotropic and
anisotropic deformation of the original image, see [18]. See also [19] for a description of the
characteristic fingerprint distortion field of the Weyl tensor.

As long as the spacetime is described by a background metric with small perturbations
hµν , equation (1) is solved order-by-order in hµν . We shall consider with Robertson–Walker
metric gRW

µν with scalar, vector and tensor perturbations,

gµν dxµ dxν = a2(η){−(1 − 2φ) dη2 + 2Bi dη dxi + [(1 + 2ψ)γij + 2Eij ] dxi dxj }, (2)

with ∇ iBi = ∇ iEij = Ei
i = 0. The spatial metric γij dxi dxj = dχ2 + S2

K(χ) d�2 is written
in terms of the comoving angular-diameter distance SK(χ) = sin(

√
Kχ)/

√
K allowing for

curvature K = {−1, 0, 1}, χ is the comoving radial distance and d�2 is the infinitesimal solid
angle. Exploiting the conformal invariance of null geodesics, for ḡ RW

µν ≡ a−2(η)gRW
µν , the

optical tidal matrix at zeroth and first orders reads

Ra(0)
b = −Kδa

b , Ra(1)
b = DaDb(φ + ψ + Bχ̂ + Eχ̂χ̂ ) + K

(
Ea

b − Eχ̂χ̂ δa
b

)
, (3)

with Da being the covariant derivative with respect to the spatial metric γij and χ̂ denoting
the component along the line-of-sight. Accordingly, equation (1) leads to

D̈(0) = −KD(0), D̈(1) = −KD(1) + R(1)D(0). (4)

Integrating over dλ = dχ and finally rescaling the solutionD = D(0)+D(1) by the (angular)
distance of the source galaxy, dA(λ), we get the amplification matrix Aab = Dab(λ)/dA(λ); its



Scalar-field quintessence by cosmic shear 7107

diagonal and off-diagonal terms, which account for the isotropic and anisotropic deformation
of the original image, are the observed quantities. In particular, neglecting vector and tensor
perturbations, from Ra(1)

b ≡ DaDb, the convergence field κ = (
1 − 1

2 TrA
)

induced by a
sources located at (SK(χ)θ, χ) reads

κ(θ, χ) =
∫ χ

0
dχ ′ SK(χ ′)SK(χ ′ − χ)

SK(χ)
�2[SK(χ ′)θ, χ ′] (5)

where the deflecting potential  is calculated solving the field (e.g. Einstein) equations.
Eventually, one has to integrate over the distribution of sources n(χ) along the line-of-sight.
Usually, a fitting function of the form n(z) ∝ (z/zs)

α exp[−(z/zs)
β] is taken to reproduce the

observed distribution of sources as a function of redshift z.
In order to extract the cosmological signal getting rid of the intrinsic ellipticity of sources,

one measures n-point correlation functions. Restricting ourselves to two-point ones, in the flat
sky approximation, the convergence and shear power spectra are

Pκ(�) = Pγ (�) = 1

4

∫
dχ g2(χ)[k4P(k, χ)]k=�/SK(χ) (6)

where g(χ) = ∫ χH

χ
dχ ′ n(χ ′)SK(χ ′ − χ)/SK(χ ′) and P is the three-dimensional power

spectrum of the deflecting potential. Two-point correlation functions in the real space, like
top-hat shear or aperture mass variances, are filtered integrals of this quantity [9].

3. Quintessence by cosmic shear: parameterizations versus ‘physical’ models

The use of parameterizations for the quintessence equation of state generally assumes a
Friedmann–Robertson–Walker universe, thus excluding a priori other options for the dark-
energy sector. Moreover, every parameterization is affected by the choice of a dataset-
dependent pivot redshift [10], by the consistency with a model for the speed of sound
determining the formation of structures, and by the large number of parameters required
to suitably account for a ‘realistic’ dynamics over a wide range of redshift [20]. Dealing with
‘physics’-inspired models one would overcome these problems, aiming to investigate if a class
of theory is compatible with observations at low and high redshifts.

We explore two ordinary quintessence scenarios, realized by a self-interacting scalar
degree of freedom Q with Ratra–Peebles (RP) and supergravity (SUGRA) potentials

VRP(Q) = M4+α/Qα; VSUGRA(Q) = M4+α exp
(
Q2

/
2M2

Pl

)/
Qα (7)

which guarantee the (partial) solution of the fine-tuning problem [7]. The mass scale M is
uniquely determined once α and the density parameter �Q are fixed.

Background and perturbations evolution in linear regime are computed solving the
Einstein and Klein–Gordon equations by means of a Boltzmann code described in [21].
Dealing with general relativity, on sub-horizon scales one can safely use the Poisson equation
to relate the deflecting potential P = 4Pφ to the power spectrum of matter perturbations. In
order to account for the nonlinear matter power spectrum in a feasible way for a grid-based
likelihood analysis, we use two linear-to-nonlinear mappings [23] (see [15] for a generalization
in scalar–tensor theories). Although calibrated on �CDM N-body simulations, we suppose that
they holds for QCDM models, provided the linear regime is properly taken into account using
the correct linear growth factor and the spectra normalized to high redshift (by CMB). Indeed,
the Q-field mostly acts on the background dynamics affecting the onset of the nonlinear regime,
while the successive evolution on small scales (affecting the structure of single galaxies/halos,
bias, etc) is essentially dictated by astrophysical processes. See however [24], where the effects
of the QCDM background dynamics on structure formation have been scrutinized.
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Figure 1. Likelihood analysis of the quintessence parameter space for RP (left) and SUGRA
(right) models, marginalizing over (ns , zs), using CFHT cosmic-shear data (blue contours, at 68,
95 and 99%), the ‘goldset’ of SnIa (green) and both jointly (red). The shaded region is excluded by
the location of the first peak of CMB-CTT

� , according to WMAP-3yr data (see the text for details).
Dotted lines refer to log10 M/ GeV, see equation (7).

We allow (�Q, α, ns, zs) to vary, keeping the other parameters fixed, see [17] for details.
Furthermore, we marginally use CMB data to reduce the quintessence parameter space, see
the next section.

4. Joint cosmic-shear–SnIa data analysis

We combined VIRMOS-Descart, CFHTLS-deep and CFHTLS-wide/22 deg2 top-hat shear
variance data (see [12, 17] for details) to investigate the sensitivity to the description of the
nonlinear regime. The results look different when using the Peacock and Dodds or the Smith
et al prescriptions [23], which are based on different modelling of the nonlinear clustering.
Note that both mappings do not include the effects of baryons, not negligible on the scales of
interest to cosmic shear [25]. Interestingly, the quintessence parameter space (�Q, α) seems
not to be sensitive to nonlinear gravitational clustering, probing that (ordinary) quintessence
primarily acts on geometry.

Combining the cosmic-shear data with the ‘goldset’ of supernovae Ia (SnIa) [27] and
marginalizing over ns and zs , figure 1, one can safely constraint RP models (α < 1,�Q =
0.75+0.03

−0.04 at 95%) because of the strong degeneracy between the two observables. More care
is needed for SUGRA models, where the superposition of likelihood contours is severely
dependent on reliability of their location, ultimately dependent on systematics. As for
cosmic-shear measurements, redshift and shear calibration of datasets are the crucial points
[26]. If we trust in current control of systematics, we have α = 2+18

−2 ,�Q = 0.74+0.03
−0.05

at 95%. SUGRA models appear less constrained than RP ones because of the milder
dependence of their low-redshift dynamics on α, see [17] for more details. Eventually,
one can extract the value of the mass scale M, whose contours follow the estimate
log10(M/GeV) � (19α − 47 + log �Q)/(α + 4) which holds as long as Q ∼ MPl.

Exploiting the one-to-one relation between (�Q, α) and the values of the quintessence
equation of state and its time derivatives (valid for α �= 0) at whatever redshift, we translate
the likelihood contours of the joint analysis in a (w,w′) parameter space (w′ ≡ dw/d ln a),
evaluated at z = 0, see figure 2. This is useful to compare the models at hand with other
classes of models [28], and with the dynamical constraints w′ > −3(1 − w2) (solid line),
corresponding to a Q-field’s speed of sound c2

s < 1, and 3w(1 + w) < w′ < 0.2w(1 + w)

(dashed line), characterizing the so-called freezing models. For every set of points
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Figure 2. Likelihood analysis of the quintessence parameter space (�Q, α) transposed in the
(w, w′) parameter space (at z = 0), for RP (left) and SUGRA (right) models, using only the
combined cosmic-shear datasets. Dark and light crosses refer to points lying, respectively, within
the 68% and 95% confidence levels of the original likelihood, while dots correspond to remaining
points of the (�Q, α) grid (see section 4).

characterized by the same α (linearly varying by �α = 1), points span the �Q range [0.4, 0.9]
from top to bottom (linear steps ��Q = 0.025). The fact that w′ is larger for SUGRA models
indicates that the low-redshift dynamics is faster than in RP case; this is due to the fact that,
for every α, all the SUGRA models converge to a narrow range of w values at z = 0. The
(w,w′) representation is also helpful to explain the region of the quintessence parameter space
excluded by the location of the first peak �1st of CMB temperature anisotropies, according
to WMAP-3yr data [22] (we considered the very conservative range 201 � �1st � 240, see
figure 1): models with large values of α have large w, thus a distance to the last-scattering
surface larger than a �CDM model. Hence, the acoustic horizon is expected at smaller
multipoles.

5. Wide surveys: forecasts

Focusing on wide surveys (figure 3), one can investigate angular scales where the
contamination of the nonlinear regime is reduced (a residual being always present because
of the integration along the line-of-sight, see equation (5)). Using a synthetic realization of
the CFHTLS-wide full survey, we performed a likelihood analysis using only angular scales
�20 arcmin. Since it corresponds to cutting off larger wavemodes k, the contours concerning
all the cosmological parameters we considered broaden. However, the contours of the
quintessence parameter space are less affected by this cut. In particular, SUGRA models
seem to be very slightly dependent on α but highly sensitive on �Q. Finally, remark that the
results depend on n(z), which we suppose to be the same of that measured for the 22 deg2

dataset.
This analysis points towards the gain achievable by a very-wide survey, for which the

quality image requirements very likely need space-based observations. We thus forecast the
improvement on the RP and SUGRA models considering a DUNE-like mission [29], a shallow
survey covering 20 000 deg2. The results depicted in figure 4 illustrate the gain with respect
to the full CFHTLS-wide survey. It has to be stressed, however, that this estimation is based
on an approximate distribution of sources, assumes a perfect correction of the point spread
function and finally is marginalized over a small number of cosmological parameters (which
beside (�q, α, ns, zs) include the optical reionization depth τreion, finally acting on the CMB
normalization of the shear spectrum).
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Figure 3. Likelihood analysis of the top-hat shear variance based on a synthetic realization of the
170 deg2 CFHTLS-wide survey (filled contours; 68% and 95% c.l.) and considering only scales
�20 arcmin (empty contours), for RP (upper) and SUGRA (lower). Solid (dotted) lines in the
(�q, α) plane represent the value of w (w′) at z = 0.

Figure 4. Fisher analysis forecast for a CFHTLS-wide 170 deg2 survey (wide/blue ellipses) and
a DUNE-like 20 000 deg2 survey (small/red ellipses; contours at 1 and 2σ ) for the (�Q, α, ns)

parameter space, marginalizing over (τreion, zs). Filled (empty) contours refer to SUGRA (RP)
models both centred at the same fiducial model. For RP, only CFHTLS-wide contours are shown.

6. Concluding remarks

Using a general formulation of weak lensing valid for every metric theory of gravity, thus
for general relativity as well as scalar–tensor theories of gravitation, we dispose of tools to
study several classes of the dark-energy sector at both low and high redshifts. Notably,
we can combine weak-lensing, supernovae and CMB observables avoiding the use of
parameterizations, which complicates a safe combination of datasets and can hardly match
any well-defined theory. As for cosmic shear, we explicit here the weak-lensing formulation
to include vector and tensor perturbations of the metric in a non-flat geometry (equations (3)
and (4)), which will be useful, e.g., for joint analysis including the contribution of primordial
gravitational waves.

We investigate two classes of ordinary quintessence models by means of real cosmic-
shear data, combining with supernovae data, putting forward the interest of using CMB
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data to normalize the spectra and thus define the onset of the nonlinear regime of structures
formation. We get an upper bound on the slope of the self-interacting potential for RP models,
finally compatible with a �CDM model, while SUGRA models could be distinguished from
the latter provided a good control of systematics is guaranteed. In particular, we obtained
αSUGRA = 2+18

−2 ,�Q = 0.74+0.03
−0.05 at 95%, corresponding to a mass scale M for the quintessence

potential ranging from ∼1 meV to ∼1014 GeV. The contamination of nonlinear gravitational
clustering, the most delicate issue on the theoretical side, can be reduced when disposing
of wide surveys, which reasonably require space-based missions to achieve a high-precision
characterization of the dark-energy sector. For a class 10 000 deg2 survey, a simplistic Fisher-
matrix analysis indicates a gain of 10–15 on the quintessence parameter space for the two
models we considered.
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